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ABSTRACT

The development of miniature plasmonic signal sources, anten-

nas and detectors are paving the way towards advanced health-

care networks, namely, in-vivo Wireless Nanosensor Networks

(iWNSNs). These networks are expected to enable a plethora of

applications ranging from intra-body health-monitoring to drug-

delivery systems. The state of the art of nanoelectronics, nanopho-

tonics, and nanoplasmonics points to the Terahertz (THz) band

(0.1-10 THz) as the frequency range for communication among

nano-biosensors. Several propagation models have been recently

developed to study and assess the feasibility of intra-body electro-

magnetic (EM) nanoscale communication. These works have been

mainly focused on understanding the propagation of EM signals

through biological media, but do not present extensive formulation

which quantify the noise contributions in the intra-body channel. In

this paper, a stochastic noise model for iWNSNs is presented upon

analyzing the individual noise constituents that affect intra-body

systems operating in the THz frequency band. The identified noise

sources include Johnson-Nyquist noise, Black-body noise as well as

Doppler-shift-induced noise. The probability distribution of each

noise component is derived and a comprehensive noise framework

is established which allows the total noise power-spectral density

of the iWNSN in the THz frequency band to be computed. The

proposed analytical model is fundamental as noise is an important

metric which affects both the intra-body channel capacity and data

rate in the THz band.
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1 INTRODUCTION

Nanotechnology is expediting the development of novel nanosen-

sors that are capable of detecting various types of events at the

nanoscale with unprecedented sensing and actuation capabilities.

In-vivo Wireless Nanosensor Networks (iWNSNs), which have the

potential to operate inside the human body in real time, have been

recently proposed as a technique to provide faster and more precise

disease diagnosis and treatment in comparison to traditional tech-

nologies [5]. Meanwhile, researchers have effectively deployed sur-

face plasmon resonance sensors to investigate circulating biomark-

ers in body fluids for the diagnosis of deadly diseases [22]. By means

of communication, nanosensors will be able to autonomously trans-

mit their sensing information to a common sink, be controlled from

a command center, or coordinate joint actions when needed [2].

The cutting edge paradigms of nanoelectronics, nanophotonics,

and nanoplasmonics points to the Terahertz (THz) band (0.1-10

THz) as a promising frequency range for communication among

nano-biosensors. Though most nano-biosensing applications rely

on the use of light, the study of the THz band propagation within

the human body is still at its infancy. Numerical analysis and char-

acterization of THz propagation through various body tissues have

been presented in [23]. A genuine model that accounts for the

intra-body signal degradation has been demonstrated in [8]. Start-

ing from these, the development of comprehensive architectures

and protocols for intrabody nanonetworks comprise the path of

research that ought to be addressed.

Noise is a controlling quantitative influence on the development

of systems. It basically degrades the signal transmission quality and

affects the system throughput, for it may require re-transmission of

data packets or extra coding to recover data in the presence of errors.

Existing research in terms of the analysis and quantification of noise

in the THz frequency band can be found in [12][13]. Yet, in the
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at every wavelength. The intra-body medium could be denoted as a

Black-body since it is associated with temperature above absolute

zero. Therefore, the intra-body channel always has background

noise even without signal transmission.

The spectral radiance of a body, Ef , describes the amount of

energy radiated from a body at different frequencies. It is measured

in terms of the power emitted per unit area of the body, per unit

solid angle that the radiation is measured over, per unit frequency

as [11]

Ef (f ,T ) =
2hf 3

c2
exp

[
−
(
hf

kbT
− 1

)]
, (6)

where c is the speed of light in the medium. The power spectral

density, H (f ), is the product of the spectral radiance, Ef (f ,T ), and
the effective aperture area, Aef f , of the nanoantenna, i.e.

H (f ) = Ef (f ,T ) · Aef f , (7)

where Aef f is inferred from the amount of noise that the antenna

intercepts and is given by

Aef f =
λ2д

4π
. (8)

λд is the effective wavelength given as λ/n′, in which n′ and n′′

are the real and imaginary parts of the tissue refractive index n,

respectively. The tissue refractive index is given as

n = n′ − jn′′. (9)

In classical physics, Black-body radiation is considered as chaotic

EM radiation. Hence, the electric field strength and the magnetic

induction of a mode of the thermal radiation (in a small spatial

region) have a Fourier series representation given by [10][21]

x(t) = 1

2
a0 +

N∑

n=1

ancos(2π fnt) + bnsin(2π fnt). (10)

Thereby, the phenomenon is described by a characteristic set of

frequencies or harmonics, fn . If we take a particular mode of the

radiation field, an as an example, we have [10]

an =
2

T

∫ T

0
x(t)cos(2π fnt)dt . (11)

Next, we consider the characteristic function of this particular mode

given as

φn (A) =
〈
e−janA

〉
. (12)

The term
〈
a2n

〉
is related to the correlation function by

〈
a2n

〉
=

4

T 2

∫ T

0

∫ T

0

〈
x(t ′)x(t ′′)

〉
cosωnt

′cosωnt ′′dt ′dt ′′. (13)

Using the properties of a Gaussian random process, it is known

that 〈
x(t ′)x(t ′′)

〉
= 2Dδ (t ′ − t ′′), (14)

in which D refers to the diffusion coefficient. It then follows that

⟨exp(−janA)⟩ = exp

[
−1

2
A2

〈
a2n

〉]
, (15)

where
〈
a2n

〉
=

4D

T
. (16)

The probability that a2n has a particular value of an follows from

the Fourier Transform, and the form of the characteristic function

indicates that the distribution is Gaussian. The PDF of the excitation

of the amplitude, an , is given by [10]

p(an ) =
1

⟨an⟩
√
2πexp

[
− a2n
2⟨a2n⟩

]
.(17)

3.3 Doppler-Shift-Induced Noise

The internal fluctuations which result from the heat transfer mech-

anism experienced by the intra-body system are characterized by

the cells’ random and irregular velocity. To assess such scenario,

consider the one-dimensional motion of a spherical particle with

radius r , massm, position x , and velocity v(t) in a fluid medium

having a viscosity η. Newton’s equation of motion for the particle

is [14]

m
dv(t)
dt
= Ftot (t), (18)

where Ftot (t) is the total instantaneous force on the particle at

time t , arising from the interaction of the particle with the sur-

rounding medium. This force is governed by a friction force, Ff r ic ,

proportional to the velocity, v(t), of the particle and given as [20]

Ff r ic = −ζv(t), (19)

where the friction coefficient, ζ , also referred to as the drag constant,

is described by Stokes law as [14]

ζ = 6πηr . (20)

A random force, ξ (t), represents the rapidly fluctuating part of

Ftot . For such scenario, the analysis could be modeled using the

Brownian particle equations of motion, referred to as Langevin

equations, given by [20]

m
dv(t)
dt
= −ζv(t) + ξ (t),

dv(t)
dt
= −γv(t) + 1

m
ξ (t),

(21)

where γ = ζ /m = 1/τ and τ is the Brownian timescale for the

relaxation of the particle velocity. The force during an impact is

supposed to vary with extreme rapidity over the time of any ob-

servation, i.e. in any infinitesimal time interval, which cannot be

strictly true in any real system. Therefore, the effect of the fluc-

tuating force can be illustrated by providing its first and second

moments as time averages over infinitesimal time interval [25]

⟨ξ (t)⟩ξ = 0, ⟨ξ (t1), ξ (t2)⟩ξ = 2βδ (t1 − t2), (22)

where ⟨...⟩ξ is an average with respect to the distribution of the

realizations of the stochastic variable ξ (t), and β is a measure of the

strength of the fluctuation force. If ξ (t) is continuous, the existence
of a local solution for (21) is guaranteed. An explicit formal solution

of (21) can be obtained as [20]

v(t) = v(0)e−γ t + 1

m

∫ t

0
e−γ (t−x )ξ (x)dx . (23)

The mean squared velocity can be found from (23) as [25]

〈
v(t)2

〉
= v(0)2e−2γ t + β

ζm
(1 − e−2γ t ). (24)
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In the long time limit, the exponential drops out and the mean

squared velocity must approach its equilibrium value kbT /m. Con-

sequently, we have [25]

β = ζkbT . (25)

The changing velocity of the source (nano-antennas in nano-

biosensing implants in the human body) results in Doppler-shifts

to the transmitted frequency of light originating from a source that

is moving in relation to the observer (receiver). Therefore, the wave

is observed to have frequency, fd , for a signal arriving at an angle,

ϕ, given as

fd = fmcosϕ, (26)

where

fm =
⟨v(t)⟩
λд
. (27)

fm is the maximum Doppler-shift at the particle speed and carrier

wavelength, λд .

The received signal R(f , t) is a result of many plane waves each

shifted by the Doppler contribution appropriate to the particle

motion relative to the direction of the plane wave [19]. The power

contributed to the received signal by plane waves constitutes of

the power, f (ϕ)d(ϕ), arriving in the angular interval that would

be received by an isotropic nano-antenna of the same polarization,

multiplied by the nano-antenna gain, G(ϕ − α), multiplied by the

square of the parallel fraction of polarization
[
pu (ϕ) · pд(ϕ − α)

]

as [9]

f (ϕ)d(ϕ)
[
pu (ϕ) · pд(ϕ − α)

]2
G(ϕ − α), (28)

where α is the antenna bearing of the antenna beam. From (26), we

find dϕ as

dϕ = − 1

fm

√
1 −

(
fd
fm

)2
d f . (29)

By substituting (29) into (28) and combining the two angles
(
+

−
)
ϕ

from which the Doppler-shift, fd arises, the power-spectral density

of R(f , t)/
√
2 is given as [19]

S(f ) = S1(f ) + S2(f ), (30)

in which

S1(f ) =
f (ϕ)G(ϕ − α)

[
pu (ϕ) · pд(ϕ − α)

]2

fm
√
1 − (fd/fm )2

, (31)

and

S2(f ) =
f (−ϕ)G(−ϕ − α)

[
pu (−ϕ) · pд(−ϕ − α)

]2

fm
√
1 − (fd/fm )2

, (32)

where ϕ = cos−1
��� fdf m

���. Similar to mobile-radio reception, both

the in-phase and quadrature components at any given time, t , are

independent Gaussian random variables with the following PDF

[19]

f (x) = 1

σ
√
2π

exp

[
− x2

2σ 2

]
. (33)

x in this case is the in-phase component of R(f , t) and σ is the RMS

value given as [19]

σ =

√∫ fm

−fm
S(f )d f . (34)

3.4 Combined Noise Model

In order to formulate an end-to-end noise model, the total noise

power spectral density should be calculated. From the analysis pre-

sented above, it is clear that the three noise sources are probabilisti-

cally independent. Thereafter, the resulting PDF is the convolution

of (2), (17) and (33). As we are dealing with three Gaussian PDFs,

we should recall that the convolution of Gaussian functions is also

a Gaussian, with variance being the sum of the original variances

[6]. This can be proved by knowing that the Fourier Transform of

a Gaussian, fX (x) = N(x ; µX ,σ 2
X
) is given as

F { fX } = FX (ω) = exp[−jωµX ]exp[−
σ 2
X
ω2

2
]. (35)

According to the convolution theorem and by considering three

Gaussian PDFs we have

fZ = fX ∗ fY ∗ fW = F −1
{

F { fX } · F { fY } · F { fZ }
}

= F −1
{

exp [−jωµX ] exp
[

−
σ 2
X
ω2

2

]

exp [−jωµY ]

exp

[

−
σ 2
Y
ω2

2

]

exp [−jωµW ] exp
[

−
σ 2
W
ω2

2

] }

= F −1
{

exp − jω (µX + µY + µW )

exp



−

(
σ 2
X
+ σ 2

Y
+ σ 2

W

)
ω2

2



}

= N(z; µX + µY + µW ). (36)

To compute the total power spectral density, we add the spectral

densities of the individual noise sources. To do so, we consider

the simplest nano-antenna structure demonstrated to date, i.e., a

nano-dipole antenna, with G(α) = 1.5. By substituting the gain of

the antenna, (30-32) will lead to

Ssim (f ) = 3

fm

√
1 −

(
fd
fm

)2
. (37)

Next, we sum of the individual noise contributors in the in-vivo

system as

Ntot (f ) = Ga (f ) + H (f ) + Ssim (f ). (38)

4 NUMERICAL RESULTS

In this section, we numerically evaluate the intra-body noise model

presented in Sec. 3. Despite the fact that our analysis is valid for

any homogeneous medium, in this section, we provide numerical

results for the specific case of blood, as it is considered a good

example of a mediumwith various components. Blood plasma is the

liquid component of the blood which has tiny particles of dissolved

protein, glucose, and minerals, among others. Blood plasma also

holds different types of blood cells in suspension, namely, platelets,

red blood cells, and white blood cells. As mentioned in Sec. 2, the

primary energy source in the system is a nano-antenna, which

radiates an EM wave at a distance. As a result of the absorption,






